The Scanner Problem
Author: COMAP
Background:
Industrial and medical diagnostic machines known as Magnetic Resonance Imagers
(MRI) scan a three-dimensional object such as a brain, and deliver their results in the form of a three-dimensional array of pixels. Each pixel consists of one number indicating a color or a shade of gray that encodes a measure of water concentration in a small region of the scanned object at the location of the pixel. For instance, 0 can picture high water concentration in black (ventricles, blood vessels), 128 can picture a medium water concentration in gray (brain nuclei and gray matter), and 255 can picture a low water density in white (lipid-rich white matter consisting of myelinated axons). Such MRI scanners also include facilities to picture on a screen any horizontal or vertical slice through the three-dimensional array (slices are parallel to any of the three Cartesian coordinate axes). Algorithms for picturing slices through oblique planes, however, are proprietary. Current algorithms are limited in terms of the angles and parameter options available; are implemented only on heavily used dedicated workstations; lack input capabilities for marking points in the picture before slicing; and tend to blur and "feather out" sharp boundaries between the original pixels.
Problem Download

Mathematics Topics:
Application Areas:
You must have a Mathmodels Membership to download Student Papers and Commentary.
If you're already a member, login here.