Refresh for Relevance

WWW.COMAP.ORG/R4R




P

© 2025 by COMAP, Inc.
The Consortium for Mathematics and Its Applications (COMAP)
175 Middlesex Turnpike, Suite 3B
Bedford, MA 01730

Published and distributed by

COMARP, Inc.
www.comap.org

2025 Disclaimer

This reprinted publication contains some information that may be outdated or no longer
accurate, such as web links and contact details. For the most up-to-date information about
COMAP and its publications, please visit: www.comap.org.

The text of this publication, or any part thereof, is made available as part of the Refresh for
Relevance (R4R) project. More information about the project can be found at

www.comap.org/R4R



http://www.comap.org/
http://www.comap.org/
http://www.comap.org/R4R

joduie 688

Time Resources in Animals

Kevin Mitchell
Steven Kolmes




86  Tools for Teaching 1968

InTERMODULAR DESCRIPTION SHEET:
TirLE:

AUTHOR:

ARSTRACT:

PREREQUISITES:

Reraren Unirs:

UMAP Uwir 688
Time Resources in Anitnals

Kevin Mitchell

Department of Mathematics and Computer Science
Steven Kolmes

Department of Biology

Hobart and William Smith Colleges

Geneva, NY 14456

This unit presents an alternative to the classical aptimal
foraging models in behavioral ecology. In contrast to
optimizing the net energy intake in a forager’s diet, the
model presented in this reading is concerned with a
time-budgeting process dependent only upon whether an
animal is hungry or satiated at a given moment. The
analysis of the mode! is carried out using simple Markov
chains. Computer programs included in the unit are used
to generate “field data,” which are then used to deter-
mine the proportion of time various animals will spend
foraging and resting. This process exposes beginning stu-
dents to elementary analysis of rather complex data sets.

We use this unit in a course that has no mathematical or
biclogy prerequisites. Only high-school algebra is re-
quired. If students are to generate data or their own, then
access to a computer is necessary. We have found that
supplying compiled versions of the programs to the class
makes the data cellection exercises easy, even for students
with no previous computer experience.

The Pace of Life: An Introduction to Empirical Model
Fitting (Unit 551}, by Bruce King; reprinted in The
UMAP journal 3(2) (1982): 221-248, and in UMAP Mod-
ales: Tools for Teaching 1982, 133-160,

@ Copyright 1989 by COMAP, Inc. All rights reserved.
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Time Resources

The Daily Pie

This module is an adaptotion of an article by Joan M. Herbers, which
gave one explanation of why some animals apparently idle away such a large
portion of their “actwe” time {Herbers 1981].

An animal surviving in the wild has a wide array of tasks to
perform. For example, it must seek and consume food, find or
construct shelter, and mate. Because each day consists of only 24
hours, we can think of it as a “pie” that can be sliced various ways as
portions of time are allocated to different tasks. This pie can be cut
variously but can never be made more generous in total. Despite this
limitation, many animals appear to act as though they have “all the
time in the world.” Rather than rushing from task to task, many
organisms have daily time budgets that seem to reflect a considerable
amount of spare time. In this Module, we will examine why that
might be so. We shall focus specifically on eating, and examine
various models that show how an animal that is either hungry or not
hungry at a given moment will behave in the immediate future. We
shall begin with general time budgeting and proceed through a series
of increasingly-detailed models until we begin to approach situations
that may elucidate how animals behave in the real world.

Let’s first turn our attention to some of the data compiled from
the research in this area. Each of the studies represented in Table 1
was done by a different researcher using slightly different procedures
on wildly different animals. In general you can think of a “resting”

Table 1.
The allocation of time resources by several animals [Herbers 1981].

Proportion of Time Spent

Animal Foraging Resting Social Moving Other

short-tailed shrew 0.3 68.3 315

olympic marmot < 50 > 50

Eulampis hummingbird 11.9 84.0 30 0.6 48
Colibri hummingbird 318 65.9 04 1.1

seaside sparrow 61.1 4.9 3.7 209
walrus 17.6 66.9 12.6 0.3 26
howling monkey 30.0 70.0

orangutan 459 394 3.7 11.1
chimpanzee 55.0 23.0 59 14.2

gorilla 250 51.0 59 11.0
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animal as being motionless during a period of time when activity
might normally be expected.

This table makes one thing clear immediately. There is a
tremendous range in the proportion of time that an animal spends
foraging, ranging from 0.3% (short-tailed shrew) to 61.1% (scaside
sparrows) of available time. Any model that attempts to explain all
of these values will have to be broadly designed indeed! And resting
is often a very important category; for example, it is 70% of
available time for howling monkeys and 84% of available time for
Eulampis hummingbirds. Any model that does not predict both
foraging and resting won’t explain these data in a useful fashion.

Some “resting” behavior in animals is certainly biologically
important. We know as humans that the extra flow of blood to our
digestive organs and the rise in blood-sugar levels after a large meal
makes us feel disinclined to activity and may even lead to a nap.
Remaining huddled in a motionless condition can decrease the
exposed surface area of an animal and hence help prevent chilling in
cold situations; a cat sitting on a cold stairway with its legs and tail
drawn protectively under its body is an example of this behavior. If
predators are present, temporarily motionless animals may avoid
observation and so *live to move another day.” But the very high
values for “resting” presented in the accompanying data, especially
for very large vegetarian animals in warm climates {which eat
contimual small meals, have few if any predators, and do not
generally need to conserve bodily warmth), as is apparent for
gorillas, makes us suspect that not all “resting” is serving a biologi-
cally crucial function. We can refer to such resting in excess of
apparent need as “laziness.”

One additional point must be made before we continue. The
term “laziness” has the potential of slipping into anthropomorphic
errors if it is used loosely. In this module, we are not attempting to
infer anything whatsoever about an animal’s “personality” by the
use of the term “lazy.” In Section 4 a mathematical definition of
“laziness” will be presented that will let us use the term unambigu-
ously. Until that point, we can do no better than to repeat Herbers’s
[1981] cautionary statement about the word “ laziness™:

This term is unfortunately loaded with anthropomorphic
connotations; the usage of “laziness” is restricted here to
denote those periods of inactivity for which observers cannot
demonstrate a physiological or ecological function, and for
which such functions indeed may not exist. Laziness is but a
subset of the summed observations of resting and inactivity,
since some quiescence does serve a purpose.
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To understand the following thermostat models of feeding behav-
ior, designed to help explain laziness, we need to understand certain
key concepts. The biological concepts necessary to thinking about the
models will be covered first, to be followed by mathematical con-
structions built from these biological ideas.

Some animals forage on a short-term basis, others on a long-term
basis. Squirrels store nuts for the winter, acorn woodpeckers make
holes in hollow trees to store acorns, honeybees collect nectar from
flowers and concentrate it by evaporation to produce honey stores.
All three of these are examples of long-term foraging, in which
foraging behavior is based upon “expectations of future need” {food
reserves to survive the winter, acorns collected to feed nestling
woodpeckers at a later time) rather than upon whether the animal is
hungry at the moment it begins to forage. The following models of
feeding exclude consideration of long-term foraging because of the
complications it introduces. All of the models we will consider will be
of short-term foraging, which acts to respond te immediate hunger
by collecting whatever amount of food is required. Short-term for-
agers often collect perishable food items that could not be stored.
Raw fish becomes unattractive in a warm climate in only a short
period of time, so ospreys (fish hawks) cannot store fish the way
acorn woodpeckers store acorns.

The following models also assume that an animal can only do
one thing (forage or rest) at a time. There are situations when an
organism can be both foraging and doing something else simultane-
ously, as the behavior of humans in sport fishing so eloquently
attests. Unlike human sports fishers, most animals cannot drink
beverages or sleep while foraging; and it is on the situation of
mutually exclusive activities that we will focus.

We can think of hunger as the result of a stomach becoming
empty. In a simple way, we can think of a stomach as continually
being emptied at a slow rate as digestive processes proceed, and
occasionally being filled at a rapid rate when we eat. (In actuality an
animal can temporarily divert most of the blood flow from its
digestive system to its skeletal muscles, and hence temporarily stop
digesting food, to have additional blood flow to muscles in order to
escape from a predator. We will ignore this real-world complication
and assume digestion to be a continuous process.) If a stomach is
being emptied from its full capacity, at some point we will say that it
reaches a “critical emptiness,” at which time nervous impulses
proceed from nerves around the stomach to the brain and signal that
the organism 1s now “hungry.”
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In three of the following four models, the possibility of starva-
tion is not considered to be important. The fourth model is of an
animal in an environment that presents a foraging situation harsh
enough that starvation is a possibility.

2. The Thermostat Model of Feeding

2.1 The Activity and Appetite Functions

As mentioned earlier, we presume that the animals we are
describing have a distinct foraging mode and that an observer can
tell when these animals are foraging. We are interested only in
whether the animal is foraging or not. So we can describe such an
animal’s activity at any time ¢ by an actirty function, a(t), which
has just two values:

(1) I, if the animal is foraging at time ¢;
a(t) = . . . . .
0, if the animal is not foraging at time {.

We presume an animal forages when it “feels hungry” and does not
forage when it “feels full.” It is here that the “thermostat” enters the
picture. At any time ¢, we imagine that the animal has an appetite
or hunger level, A(¢), which corresponds directly to how full the gut
is. Thus, the values of 4(¢) fall in a range from A(¢) = 0, when the
gut is completely empty, to h(t) = h_, , when the gut is completely
full, where %__ represents the capacity of the animal’s gut.

There are some natural expectations here. When 4(t) is close to
A, .. and the animal’s gut is sufficiently full, the animal does not
forage, so a(t) = 0. However, when 4(t) is nearly O and the gut is
rather empty, then the animal feels hungry and forages, so a(#) = 1.
A basic assumption of the thermostat model is that a non-foraging ammal
always experiences hunger al the same appelite level or set pont, to use the
thermostat analogy. This set point will be denoted by #; obviously
0<u<h,,,. As soon as the animal feels hunger, we assume that i
switches to the foraging mode with no delay. In other words, at the time ¢
when A(?) falls to u, activity “clicks on.” Only the gut is controlling
foraging; no memory of when the last meal was eaten is taken into
account. The animal will stay in the foraging mode until it has eaten
enough to fill its gut sufficiently to feel hungry no longer. That is,
will forage until it ratses h(t) to a higher set point, s, at which the animal is
satiated (the thermostat “clicks off”’). Thus we must have 0 < u < s
<A
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2.2 Changing Activities

From what has been said so far, it is clear that if A(¢) < u then
a(t) = 1 (the animal is hungry so it forages). Similarly if A(¢) = s
then a(¢) = 0 (the animal is satiated so it does not forage). But what
happens in between these set points when u < A(¢) <s? It all
depends on what the animal was doing previously. This becomes a
bit clearer if we imagine time as being “discrete” rather than
continuous. In particular, think of Af as equal to one unit of time.
(We might take A¢ to be the minimum amount of time for a
predator to find and swallow a mouthful of prey.) With this conven-
tion for Af, time ¢ represents the present moment, time { — 1
represents the moment A¢ in the past, and time ¢ + 1 represents the
moment Af into the future.

Now let’s return to the question of evaluating a(t) when u <
h(t) < 5. The answer depends on whether the gut is in the process of
filling (animal has been foraging) or whether the gut is emptying
(the animal has not been foraging). If the animal has just been
foraging and a(t — 1) = 1, then, since A(f) < s, it will continue to
forage. The animal is not yet satiated. By contrast, if the animal has
not been foraging and a(t — 1) = 0, then, since A(t) > u, it is not
yet hungry enough to forage. That is, the animal continues not to
forage and a(t) = 0. In either case, we see that when u < A(2) <0,
the animal continues to do what it has just been doing. When the
animal is between set points, it must exceed one of them in order to change us
behavior.

We see then that the animal’s activity is governed by only hwe factors:
its current gut level, h(t), and its previous activity, a(t — 1). If the gut
level is at or above satiation, then the animal does not forage. If the
gut is at or below the hunger set point, the animal forages. When the
gut level is between the two set points the animal continues to do
what it has just been doing.' We can summarize mathematically the
succession of activities as follows:

if a(t — 1) = Oand k(t) > u,then a(t) = 0 (“stays off");
if a(t — 1) = 0 and k(t) < u, then a(r) = 1 (“clicks on”);
if a(t — 1) = 1 and A(t) < s, then a(t} = I (“stays on”);
if a(t—1) = 1and A(?) = s, then a(t) = 0 (“clicks off”}.

Lrps . .

The process of states { A(1), a()} is an example of a Markov chain. The current state
at time ¢ is independent of all previous states up to but not including the state at time
i— 1
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3.1

The activity function is quite simple, having only two possible
values, corresponding to foraging and not foraging. 1t would be an
oversimplification to use the same representation for the appetite
function, k(t}. Such a two-state function would mean that the gut
registered either empty or full. We know that in digestion the gut
empties in a continuous way. On the other hand, food items gener-
ally come in “units,” and an animal can only ingest as much as its
mouth will hold. So there is some reason to think of A(f) as a discrete
variable, and we will do so. That is, we will view A(t) as changing
only by a discrete amount A%, where we assume that A/ can take on
only a finite number of values (typically only a few). The magnitude
of the change in appetite level, A%, when feeding will depend on the
profitability of the particular food item (prey). The advantage in
making A% discrete is that now k({} can assume only finitely many
values between 0 and £_, . This means that the possible number of
states for the pairs { 4(¢), a(¢)} is also finite. At any moment ¢, we
can place the animal in a particular state, and we can ask what are
the chances of it staying in its present state, or changing to some
other state, at the next moment in time, ¢ + 1.

Model I: An Oversimplified
Example

Putting the Model Together: Caterpillars

To illustrate the model, we now consider the following oversim-
plified situation. In later examples we will add more complex and
realistic assumptions to the model.

All of the general assumptions made in Section 2 and their
consequences continue to hold, including that fact that the animal’s
activity is governed by only two factors, its current gut level and its
previous activity level. There are several specific assumptions we now
make for this model.

1) There are enough resources avarlable so that when the animal forages,
it never gets hungrier. This means that A/ is never negative while the
animal is actively foraging.

2y Food items ingesied by the antmal are all assumed lo have the same
value, 1. This means that when the animal is foraging, A% is either 0
(if no food is currently being consumed) or A% is 1 (if some item is
actually being eaten).

3) We assume a specific probability b of the ammal actually eating
something af any momen! while il is in the foraging mode. To make things

6
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particularly simple, we will assume that there is a fifty-fifty chance
of the animal being successful at foraging, that is, we will set b = 0.5.
Consequently,® the probability of the animal being unsuccessful
while foraging at any moment is [ — 4 = (.5

4) When the animal is not foraging, Ah cannot be positive. In this
example we assume that Ah is either —1 or O when the animal is not
foraging, depending perhaps on the “activity” of the animal in its
non-foraging mode. In particular, we assume that Ak = — 1 (that is,
the gut is emptying) with probability d. Of course, this means that
A4 = 0 (the gut level is not changing) with probability 1 — 4.

As a biological realization of this simple example, consider a
caterpillar on an edible leaf. To such an animal, standing on a
relatively enormous expanse of [ood, its world is literally a buffet.
Once the animal begins to forage, there is no possibility of it
becoming hungrier. A hungry caterpillar merely reaches down to the
surface it is standing on, opens its mandibles, and begins to chew.
There is no possibility of a vexing delay before its stomach begins to
fill with food. Further, we can image that such a caterpillar always
chews at a specific rate. Since a leaf is a fairly uniform surface, there
are neither especially unrewarding areas to feed in, nor especially
wonderful ones. Intervals of At when a caterpillar is in the feeding
mode which do not produce any additional gut contents (A4 = ()
might correspond to the caterpillar taking a few steps, once it has
consumed all of the leaf within reach of its mandibles. Next, we can
imagine that periods of gut emptying (A% = —1) correspond to
periods during which it is strolling around on the leaf, Whenever the
caterpillar stands still, it expends less energy; and its gut temporariiy
ceases to empty (A4 = 0). Standing and strolling are non-feeding
activities, so a(t) = 0 for both of these situations. (You may prefer to
imagine this as a stationary animal whose gut empties at a variable
rate, which leads to the same mathematical description.)

To summarize the assumptions we have made so far:

1 with probability 0.5,
£ = -
i a(t ~ 1) = 1, then Al { 0 with probability 0.5;

f —1  with probability 4,

if — = he A
if a(t— 1} = 0, then A | 0 with probability | ~ 4.

It

*As in any prababilistic situation, the probabilities must sum to 1 (here (1 - 4) + b =
1}, and every probability p involved must satusfy 0 < g < 1. In the case wider
consideration, this simply means that (0 < # < 1, which forces | - 4 to satisfy the
same inequality.
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3.2

We have stated things in terms of what is happening at time ¢ — 1
simply because we will be concentrating on how the anirnal’s state
changes from one moment, ¢ — 1, to the next moment, ¢. In other
words, if we know the animal’s last state, what is the probability it
will be in some designated state at the current time?

Before we can answer such questions, we need to know the set
points for hunger and satiation. We sel the hunger point u to 0 and the
satiaiton point s to h_,  which we presume to be 2. That is, the animal
starts to forage only when the gut is completely empty (&(t) =« =
0). Its state, { £#(¢), a(¢)}, at this moment is {0,1}. The animal stops
feeding only when the gut is completely full (A(¢t) =5 =4_, = 2).
Its state at this moment is {2,0}.

The activity function a(¢) has only its two possible values, while
A(t) can assume any of three values: 0, 1, and 2. There are a total of
2 X 3 = 6 potential states, but not all of them are realizable. When
the gut is empty the animal must be foraging, so the state {0,1} is
possible but {0,0} is not. Similarly, when A(¢) = 2, a(t) = 0 so the
state {2,0} is possible while {2,1} is not. The two remaining states
{1,0} and {1, 1} are both possible. The former occurs while the gut
is emptying but has not yet reached the hunger set point. The latter
occurs when the animal is foraging but has not yet reached satiation.

Keeping Track of Changing States

We are ready to examine how an animal changes from one state
to another over time. Given that the animal was in a designated state
at time ¢ — 1, can we determine the probability that it will be in a
certain state at time ¢? For example, let us assume that the state of
the animal at time ¢ — 1 was given by { #(¢ — 1), a(t — 1)} = {1,0}.
As discussed above,

—1  with probability 4,
when a(¢ = 1) = 0, then A% = { 0  with probability 1 — 4.

This allows us to calculate the possible values of % at time ¢ In
particular,

I —1=0 with probability ¢,

h(t) = At - -
(£) = (e = 1) + Ak {1+0=1 with probability 1 — d.

Next, the corresponding values for a(¢) can be computed, since they
depend only on a(t — 1) and the current value of A(¢). We find that

8
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when a(t — I} = 0,

[ with probability |

t =
a(t) {0 with probability 1 — d.

Thus, if the previous state were {h{t — 1), a(t — 1)} = {1,0}, then
only two of the four states are possible at the next moment:
{#(t), a(1)}} = {0,1} or {1,0}. Consequently, we conclude that

it {A(t~1),a(t~ 1)} = {1,0},
{0,1}
{1,0}

{1y
{2.0]

with probability #,
with probability 1 — 4,
then { A(? ty} =

en (A1), a0} with probability 0,

with probability .

The transition probabilities for moving from state to state are given
schematically in Figure 1.

The transition diagram shows the four realizable states of the
animal. The arrows, between the states or from a state back to itself,
indicate permissible changes of state which have nonzero probability
in the direction of the arrow. The number by each arrow indicates
the probability of moving in that direction from one state to the
other.

A transition diagram gives a2 rough indication of the time an
animal spends foraging or resting. Whether the animal stays in its
present state or moves to another depends on the probabilities
assigned to the arrows leading out of and back to the current state.
In the particular example under discussion, we see that four of these
probabilities are already determined, while four others depend on
the value assigned to 4. Our expectations about whether the animal
will rest more or forage more depend on the value of 4. We might
reason this way: Assume first that d is large, say d > 0.5. Then the

05 h=0,a=1 h=1l a=1
' foraging | 05— foraging 0.5
$ ]
d 0.5
i 4

1—d h=1,4a4=0 h=2 a=0
- not foraging | * 4 —1 not foraging 1-d

Figure 1. The transition diagram for a caterpillar (u = 0, y = 2),

9
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3.3

animal is more likely than not to become hungry while resting and
thus should move quickly out of the resting states {2,0} and {1,0}
to the active state {0,1}, as the transition diagram indicates. Thus,
we expect the animal to forage more than rest (all other things being
equal). Of course, if & < 0.5, then the opposite conclusion holds.
Now 1 — 4 > 0.5, so the animal is more likely than not to stay full in
a resting state. This means it will take a longer time to become active
again. We expect the animal to rest more than forage.

Western Tent Caterpillars

Is it reasonable to talk about analyzing the feeding behavior of
real animals in terms of measuring changes in state in their behav-
ior? Is there any simple way to see whether something as small as a
caterpillar is feeding or not? Both answers turn out to be “yes,” so
long as we select animals to watch on the basis of knowledge about
their natural history.

Consider the Western tent caterpillar, Malacosoma pluviale, These
animals live in groups of approximately 100 to 300. They use silk
glands to produce a communal refuge that looks like a dirty silken
tent suspended in the branches of a tree. They leave their tent to feed
on nearby leaves and return to it to rest between feeding periods.
The tent provides them with shelter from predators, and protects
them from the drying influence of the sun [Wellington 1957]. Here
are animals whose changes of behavioral state can be monitored
simply by observing the intervals during which they leave their tent
to feed.

Experiments on these caterpillars have shown them to be social
groups with varying behavioral characteristics. Because all of the
animals in one tent are siblings produced from the egg mass of one
female moth, inherited behavioral differences bequeathed to each
group of larvae by their mother can be observed. Some groups of
larvae spend more time resting in their tents, while others spend
more time outside of their tents feeding. Laboratory simulations of
this natural variability in resting time have demonstrated that groups
of larvae that feed more and rest less (spending less than an hour in
their tent per hour of feeding activity) grow and develop more
rapidly than groups of larvae that rest more and feed less (spending
more than an hour and a half in their tent per hour of feeding
activity) [Wellington 1957]. Not only are naturally-occurring differ-
ences experimentally observable in the tendencies of caterpillars to
rest, they are measurably important to the biology of the animals.

10
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Exercises

1. Suppose now that we fix the probability 4 of the gut emptying
while at rest at 0.6 and let the probability & of the animal finding
food while foraging vary. That is,

1 with probability &,

. = _
i a{t )= Llet Ak {0 with probability 1 — &;

: —1  with probability 0.6,
t—1)=20 h = . .

if of ) > let & { (0 with probability 0.4.

Draw a transition diagram (similar to Figure 1) that illustrates

this same information.

2. We have been examining the simplest of situations: an animal
whose gut is either full, empty, or at a single state in between. We
now enlarge the gut capacity and adjust the satiation point of the
caterpillar accordingly.

* Assume that the gut capacity £_, is now 3 (instead of 2).

* Assume that the hunger point u is still 0 (empty gut) and that
the satiation point s is now 3 (full gut).

* Maintain the general assumptions about the transitions between
states for the caterpillar, namely:

0 with probability | — 4,

ifa(t — 1} = L, then Ak = {1 with probability 5,

—1  with probability 4,
ifa(t—1)= = . "
and if a ) = 0. then Ak { 0 with probability | — 4.
a. There are still two activity levels: a(¢) = 0 or I, but there are
now four gut levels: A(f) = 0, 1, 2, or 3. So there are eight
potential states for { A(1), a(¢}}. Which of these can the cater-
pillar actually realize?

b. Draw the transition diagram for this model.

Generating Data by Computer Simulation

There is a simple way to test our tentative expectations concern-
ing the animal’s time budget. (We will now assume that the proba-
bility of finding food while foraging is fixed at & = 0.5; the probabil-
ity & of getting hungrier while at rest will vary.) We (and you) will

1
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Table 2.
The armount of time spent in various states changes with 4.

Times in State {(§ = 0.5)

State d=1/3 d=2/3
{1,0} 3026 2160
{2,0} 2903 2137
{0,1} 2020 2857
{1,1} 2051 2846
Total 10000 10004

use a computer program called caterpiflar to simulate what happens
over time to such an animal.® The following method is used. For
convenience, the process starts with the animal in state {2,0} (full
and not foraging). The computer generates a random number p such
that 0 < p < 1. If 0 < p < d, then our interpretation is that Ak =
—1, so that the animal becomes hungrier and moves to state {1,0}.
If instead d < p < 1| then Ak = 0; the animal stays full and in state
{2,0}. Another random number p’ is generated; and the animal
moves or stays in its current state, according to the value of "
Similar remarks apply to the animal when it is foraging, except that
the random numbers generated are compared to 4 = 0.5 to decide
whether the foraging bout has been successful (A% = 1) or not
(Ah = 0). We iterate this process a large number of times and
simply count the number of times we find the animal in each of the
four states. Table 2 gives these data for 10,000 iterates of the process,
for two different valuesof 4: d = 2/3 and d = 1 /3.

We determine the proportion of time the caterpillar spends at
rest by summing together all of the times the animal was at rest.
That is, we take the number of times the caterpillar was in state
{2,0} and add this to the number of times the caterpillar was in
state {1,0} and then divide by the total number of iterates. When
d = 1/3 we find that proportion of time at rest is ya; = 0.59. Of
course, the proportion of time spent foraging must then be about
0.41 = 1.0 — 0.59. When 4 = 2/3 we find that the proportion of
time at rest drops to 0.43 and the proportion of time foraging is
about 0.57. Our expectations are confirmed. As 4 increases, the
amount of time at rest decreases and foraging increases. s it possible

3:"my device that generates “random’ numbers and records the results could be used.
For example, a fair die and a diligent student to record the *data’ might just as casily
have been used, though more time would be needed to complete a large number of
trials.

12
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to describe this variation more precisely? Is it possible to find a
relationship between 4 and time spent resting?

The Relationship Between d and
Resting Time

Our goal is to obtain a clearer understanding of the connection
between the proportion of resting time and 4, the probability of
getting hungrier while at rest. For the moment we operate under the
assumption that the probability b, of success in finding food while
foraging, continues to be 0.5. We can generate * field data” for our
model using the caterpillar computer simulation by systematically
varying d and keeping track of the results. We let d vary from 0.1 to
1.0 using increments of 0.1. Table 3 summarizes the results for
10,000 iterates of the process for each value of 4. Again, we see that
as 4 increases, the amount of rest time decreases. However, the
precise relationship between rest time and 4 is not obvious from the
data.

To begin our analysis on the data from Table 3, we first
determine the proportion of time spent at rest for each of the values
of 4 by adding together the number of times the caterpillar was in
states {1,0} and {2, 0} and dividing by 10,000. These data and their
graph, shown in Figure 2, confirm our earlier expectations. As o
mcreases, the proportion of resting time decreases. To repeat, this
makes sense because when d is large the animal gets hungry more
quickly, and therefore must cycle through the foraging state more
often, than when ¢ is small. Yet we still do not know the precise
relationship between o and the proportion of time at rest.

Let R denote the proportion of the iotal time spent at rest. One
approach to analyzing the graph in Figure 2 is to transform the data
so that the slope of the graph is increasing. There are two simple ways
to do this: either graph R vs. 1/4; or graph 1/R, the inverse of

Table 3.

The amount of time spent in the {our states as & vanes and b = 0.5

Times in State for Various d

Staate 0. 02 03 04 95 06 067 08 09 1.0

{1,0}) 4146 3825 2988 2839 2484 2312 2097 1903 1792 1661
{2,0) 4244 3582 3268 2758 2496 2272 2127 1907 1795 1660
{0,1} 801 1427 1844 2204 2491 2687 2849 2986 3126 3337
{1,1} 809 1366 1900 2199 2519 2729 2927 3204 3287 3342

13
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R-—l
1.0 4
d | Time Resting 1
0.1 0.84 0.8
0.2 0.72 |
0.3 0.63
04 0.56 0.6 1
0.5 0.50 1
0.6 0.48 0.4
0.7 0.42 |
0.8 0.38
0.9 0.38 0.2 -
1.0 0.33 .

! 1 ! | ! t M 1 T I

0.2 04 06 08 104d

Figure 2. The proportion of time at rest as 4 varies (4 = 0.5).

R-l
= 7 TR 3.0 ]
0.1(0.84 ]| 1.19 i
0.2 { 0.72 | 1.39 i
0.3 | 0.63 | 1.59 | 4
0.4 0.56 | 1.79 2.0 1

0.5 | 0.50 | 2.00 4
0.6 | 0.46 | 2.17 .
0.7 | 0.42 | 2.38 .
08 | 038 | 2863 .
09 (036|278 1.0 +
1.0 { 0.33 | 3.03 1

T 1 1 T 1 T 1 1 T

1
02 04 06 08 104
Figure 3. The reciprocal of the proportion of time at rest as d varies (b = .5).
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Table 4.
Predicted and observed values of R compared for various 4 (& = 0.5).
d Predicted Value of R: (24 + 1) Observed Value of R
0.09 .85 .85
0.17 .75 74
0.25 .67 66
0.33 60 59
0.67 43 43
0.75 40 39
0.95 34 35

resting time, vs. d. The latter approach works quite well here.? (Also
notice that the graph looks like a hyperbola.) First we calculate
1/R = R™' for each of the rest times in the chart in Figure 2. These
data are given in the table accompanying Figure 3, where we have
actually plotted B! vs. d.

The points in Figure 3 fall very nearly along a line. The
equation of this line can be obtained by inspecting the graph to
determine the intercept and the siope. The vertical intercept appears
to be 1. When d is 1, then R™' is roughly 3. Consequently, the slope
of the line in Figure 3 is given by

3-1
m = =2
1-0
So the approximating line has equation R™' = 2d + 1. By taking

inverses we find that when & = (.5 then

At last we have an equation relating the proportion of resting
time to d. Just how good is this equation for R? We can test the
model equation R = (24 + 1)~ by first choosing values of 4, then
calculating a predicted value for R, and finally using the computer
simulation caterpillar to evaluate R directly. Table 4 gives this

*See (King 1982} for a good discussion of simple techniques that can be used to
analyze data.
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information for various values of d. As you can see (and test fo
yourself}, the equation gives a remarkably good fit!

Exercises

3. Notice that when 4 = 1.0 and 4 = 0.5 in Table 3, the animal
spends a third of its time at rest. How can you explain this?
Shouldn’t the animal spend nearly all of its time foraging if it 1s
always getting hungry (4 = 1)?

4. In general, as b gets larger do you expect the animal to rest more
or less? Why?

5. In this exercise we will try to find a relationship between ¢ and
the proportion of time spent at rest, R, for values of b other than
0.5.

a. Use the caterpillar computer program to fill in the table below
for youwr oum value of b. Remember that the program runs
10,000 iterates for each b and 4 value.

J Times and Proportion of Time at Rest
d JO.I 0.2J0.3 04]05]06|07]08]09]10
(1,0}
{2,0}
R
g |

b. Use the information in your table 1o make a graph of R™' vs.
d for your particular value of 4.

¢. Can you spot a (linear) relationship between 7' and 4? How
would you express it? Now solve for R in terms of 4, for your
value of b.

d. Use your equation to predict new values of R for the values of
d in the table below. Run the computer simulation to check on
the accuracy of your predictions. Are you satisfied with the
results? Why or why not?

16
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d Predicted value of R Observed Value of R
0.25
0.33
0.67
0.75
0.95

e. What happens in your model if d = 0? Does your predicted
value of R match the computer-simulated value of R? Is this a
“realistic” possibility? Why or why not?

The Relationship Between b,d, and
Resting Time

So far we have worked only with fixed values of the success rate
for foraging, . We expect that as b increases the rest time should
also increase, since the animal should need less time to reach the
satiation point when b is large. For the specific value 6 = 0.5, we
systematically varied ¢ and found that R = (24 + 1) ' gave an
extremely good approximation for the proportion of time at rest. In
the preceding exercises you have found other expressions for R in
terms of 4, for different but fixed values of 4. The results for an
entire class taken as a whole allow one to see how the equation for R
in terms of 4 systematically varies with b. Table 5 gives this same
type of information as b varies in increments of one-sixth of a unit.

There is clearly a pattern to the values of R in Table 5. In fact,
if we rewrite each of the equations for R after having divided both
the numerator and denominator by the coefficient of 4, then we
obtain the equations in Table 6, which are now in an especially
convenient form.

The relationship between &, 4, and R appearstobe R = b/(b + d).
The first way to check this formula is to see whether it “predicts”

Table 3.
Equations for R in terms of 4 as & varies.
b 1/6 1/3 1/2 2/3 5/6 1

1 1 1 2 3 1

bd+1 3d+41 2d+1 3d+2 6d+5 d+1

Predicted R
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Predicted R

Table 6.
Rewritten equations for R in terms of 4 as b varies.
b 1/6 1/3 /2 2/3 5/6 1
1/6 1/3 1/2 2/3 5/6 1

d+1/6 d+1/3 d+1/2 d+2/3 d+5/6 d+1

3.7

Table 7.
Predicted and observed values of R for arbitrary values of b and d.
b d Predicted R Observed R
.37 .63 37 37
.18 44 29 29
92 81 .33 53
.26 17 60 62
17 21 .79 .78

the formula that you derived in Exercise 5 for your specific value of
b. Next we can use the equation for R to predict the results of
computer simulations for arbitrary values of b and 4. Such a test was
carried out and the results are given in Table 7. Again, the fit is
remarkably good.

Eastern Tent Caterpillars

Is there any real-world evidence that rest time and feeding
success are related to one another in the way our model has sug-
gested? Consider the Eastern tent caterpillar ( Malacosoma americanum ).
Like its relative the Western tent caterpillar ( Malacosoma pluviale),
these caterpillars feed on leaves and retreat during rest periods to the
refuge of a nearby tent that they have constructed. The behavior of
Eastern tent caterpillars feeding on leaves of different quality has
been studied [Fitzgerald and Peterson 1983).

Young leaves represent an ideal food source for tent caterpillars.
Leaves begin their lives as entities that are soft and readily chewable.
As leaves age, they become tougher and more challenging to the
rather small jaws of a caterpillar and are of less nutritional value. In
our model this aging of leaves can be interpreted as a decrease in b,
because in any given instant a caterpillar is less likely to be able to
bite off a hunk of older, harder leaf.

Among the variety of things [Fitzgerald and Peterson 1983}
measured about caterpillar feeding was the amount of time spent
between leaving their tent to commence feeding and returning to
their tent to rest. The data from six replicate experiments showed

18
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that the amount of active caterpillar foraging time was significantly
greater for larvae feeding on tough old leaves (an average of 47.7
minutes per foraging period) than for larvae feeding on fresh young
leaves (an average of 255 minutes per foraging period). As b
increased, time away from their resting area decreased; and hence 4,
d, and R interacted in these experiments generally as our model
predicted they should.

Exercises

We have found in the simplest case that the rest time, R,
for the caterpillar is quite accurately predicted by the formula
R =b/(b + d). Does the equation for R depend on the number of
transition states? To find out, you will re-examine in detail the
situation of Exercise 2. Begin by reviewing the assumptions that
were made there concerning the caterpillar with a gut capacity of
three units, then complete the following steps.

6. From Exercise 2, there are three possible rest states: {3,0},
{2,0}, and {1,0}. To test whether the rest-time equation still
holds under these circumstances, you will run a computer simu-
lation called caterpiflar? of 10,000 trials for various values of &
and d. First choose 10 pairs of values between ( and 1 for # and
4 and fill these in the tabie below.

7. Next use the equation R = /(b + d) to predict the rest time for
each pair of & and 4 values. Fill these predictions in the table.

b 1 d | Predicted R | {3,0} | {2,0} | {1,0} | Observed R

19
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“,..even low
rates of
success when
foraging can
result in a lazy
animal.”

8. Now run caterpillar? for each b and d pair. Fill in the number of
times the caterpillar is in each of the rest states (out of a possible
10,000).

9. Compute the observed R value for each b and o pair. Decide
whether the rest time formula is still valid.

10. Find an equation for the proportion of time spent foraging in
terms of & and d.

Laziness

Now we can ask under what circumstances will the caterpillar
we have been studying appear to be “lazy.” We will say that if an
animal appears to do nothing in particular for more than half the
time, then that animal is lazy. For us, this criterion translates into
determining when rest time R occupies more than half the time
budget. We see that

1 b 1
R> — e —— > —e2h>bt+de b>d
2 b+ d 2

In this simplest of examples, the caterpillar is lazy whenever 6 > 4.

It may seem counterintuitive that even low rates of success when
foraging can result in a lazy animal. For example, in Table 7 when
b = 0,26, the animal rested 60% of the time, because 4 = 0.17. Let
us consider this situation more closely. How likely an animal is to get
hungrier in any moment (A4 = —1, the gut is emptying) depends
on how rapidly its moment-by-moment activities drain its nutrient
reserves. An animal that is very active (e.g., a human being walking
outside on a cold day, needing to both move and produce body heat)
uses up energy rapidly. Such an organism has a high ¢ value; it will
become hungry quickly. By contrast, a spider sitting motionless in a
web uses very little energy. It is not likely to get appreciably more
hungry in any short time interval (A4 = 0 is normal), because it is
draining its nutrient reserve neither for movement nor to produce a
body temperature higher than the ambient air temperature.” For a

We refer to animals that use internally-generated heat to maintain a high bedy
temperature as endotherms, Eclotherms allow their body temperatures to fluctuate with
environmental temperatures, although they may use their behavior to help them
remain in warm environments (e.g., snakes basking on warm rocks).

20
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spider that is motionless in a web, its energetically-undemanding
existence (d is low) allows even an occasional fly (b is low) to satisfy
its nutritional needs. Mostly, spiders in webs just sit there!

Model II: Varying Prey Values

The Heron as Forager

For a slightly more complicated example, consider a heron
wading in a pond or marsh that contains many fish. If the density of
fish is high enough, the bird will never become hungrier once it is
motivated to feed, because it will simply reach over and nab a fish.
This type of foraging behavior is simply not active enough to
contribute to any depletion of the bird’s energetic reserves.

If there are small and large fish present in a pond, a heron that
simply nabs the closest fish when it becomes hungry will feed at one
of two rates. It will either consume a small fish and add some small
amount to its gut contents, or eat a large fish and add a large
amount to its gut contents. The probabilities of each of these feeding
events will be directly proportional to the encounter rates for the two
sizes of fish and hence to fish densities.

The Assumptions about Herons

When a heron is in the active mode, Ak can assume one of three
values depending on the outcome of the foraging bout: ¢ if the heron
captures no fish, 1 if it captures a small fish, or 2 if the heron nabs a
large fish. The likelihood of any one of these outcomes varies with
the density of the prey. We describe the general situation by saying:

0  with probability 1 — & — ¢,
if a(¢ — 1) =1,then Ak = {1 with probability 4,
2 with probability ¢.

As with caterpillars, when the heron is not foraging, A4 is either 0 or
— 1, depending on the level of non-foraging activity. Again we have

—1  with probability 4,
i -1)= h= ..
i a(t = 1) = 0, then & { 0  with probability 1 — 4.
The final assumptions concern the thermostat set points. In this
model we will presume that A the maximum value of A(t), is 4.

max?
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In other words, it takes four small fish or two large fish to completely
fill the heron’s gut. As before, we will assume that the hunger set
point is = 0. Only when A(¢) falls to 0 and the gut is empty will
the heron begin to forage. We set the satiation point to be s = 3.
That is, when £(f) > 3, the heron will stop foraging. Notice this
means that the heron need not be completely full (2(t) = 4) to stop
foraging.

To illustrate how the transitions occur this time, consider the
following situation. Assume that a(t — 1) = 1 and that A(¢ — 1) = 2,
(The heron is foraging, but not yet satiated.) Then the assumptions
on Ah outlined above imply that

h(t)

Rt — 1)+ Ah =2+ Ak
24+ 0 =12 with probability 1 — 5 — ¢,
2+ 1 =13 with probability #,
2+ 2 =4 with probability c.

The value of a(t) is now determined; in the later two situations the
animal is satiated so a(¢) = 0, while in the first situation the heron
will continue to forage so a(t) = 1. Thus, the pessible new states are

(2,1}
{3,0
{4,0}

with probability I — b — ¢,
with probability 4,

{A(1),alt)} =

with probability ¢.

Notice that it is possible to be satiated with or without being
completely full. A similar analysis for all possible states leads to the
transition diagram in Figure 4.

l-bee /b\ 1-b-c
I

h=0,a=1
foragmg

+
d
|

h=1a=0
not foraging

h=1,a=1 h=2,a=1
9?1 foraging | foragmg
\ | AN
c b c
A 4 Y
h=2a=1 h=3a=0 d h=4,a=0
“d-| 0 foraging | € 4| ot foraging | © ¢ ™ | not foraging
~1-d - *~1-d ~1-d 7

Figure 4. The general transition diagram for herons.
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Exercises

11

12

. Why was the satiation point of s for the heron not set at
fax = 4 here? (Hint: What could happen if the heron were still
foraging when A(¢ — 1) = 3?)

Draw a transition diagram for a heron that has a gut capacity of
3 units, a satiation point 5 = 4, and a hunger set point of u = 0,
where the probabilities for changing states, b, ¢, and d, have the
same meaning as in Figure 4.

Two Special Cases

of

As in the caterpillar example, we will do a computer simulation
the heron model which we have outlined. The goal is to determine

the relationship between R and the probabilities &, ¢, and 4. We

start by considering two extreme but informative cases: 1) ¢ = 0 and
O<b<l,and2)b=0and 0 <c < |,

The Case c =0

When ¢ = 0, if we assume that the heron starts out with an
empty gut and is foraging (that is, in state {0,1}, then the
general transition diagram for herons in Figure 4 simplifies to
Figure 5. This is the same transition diagram you worked
out for caterpillars with gut capacity 3 in Exercise 2. (Why
is the state {4,0} not feasible here?) Exercises 6-9 showed
that rest time in this case is still described by the formula
R = b/(k + d); no new work needs to be done.

The Case b= 0
Now consider the other extreme: Assume that 0 < ¢ < | and
that » = 0. Starting in state {l,0}, the general transition
diagram in Figure 4 reduces to the six states shown in Figure 6.

~— 1-bT ~—1-b . ——1-b"a
h=0,a=1 h=1a=1 5 h=2 a=1
foraging —b~ foraging |~ ° | foraging

¢ |

d b

| +
h=1,a=10 h=2,a=0 h=3,a=0
not foraging —d—| ot foraging |+ d - not foraging
~1-d—" 14— ~i-d-—

Figure 5. The transition diagram for herons when ¢ = 0),
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~1l—c"
h=2a=1
¢ hd foraging
d h=2 a=0 h=3 a=0 h=4,a=0
=% not foraging |* d—1 not foraging not foraging
N~1-d—7 ~N1-d—" ~1-d—~"

Figure 6. The transition diagram for a heron when ¢ and 4 vary and & = 0.

Notice that there are only two foraging states, while there are
four resting states. How does this asymmetry affect the rest-time
equation? Using the computer program hAeron, we can gather some
simulated field data on this situation. The heron simulation works
much the same way as the caterpillar simulation, except that the
number of states has been expanded and the foraging transitions
have been appropriately modified. As with the caterpiilar model, we
start our analysis by allowing only one of the variables to change
and hold the other constant. When the probability ¢ of catching prey
iterns of value two was kept fixed at 0.5, and the probability 2 of the
gut emptying one unit while at rest was allowed to vary, the data in
Table 8 were obtained.

The data in Table 8 were then used to compute the proportion
of time at rest for each value of 4, by adding together the times in
states {1,0}, {2,0}, {3,0}, and {4,0} and then dividing by 10,000
(see Table 9). As in the caterpillar model, as ¢ increases, the rest

Table 8.
Time spent in states as d varies (¢ = 0.5, 6 = 0).

Times in State for Various J

State

0.1

0.2

0.3

0.4

0.5

0.6

0.7

08

0.9

1.0

{1,0}
{2,0}
{3,0}
{4,0}
{0,1}
(2,1}

2115
2403
2128
2428
443
443

2072
2104
2079
2133
784
828

2009
1944
2016
1797
1129
1105

1804
1759
1730
1800
1452
1453

1627
1701
1649
1661
1673
1689

1551
1542
1577
1597
1868
1865

1481
1464
1449
1522
2016
2068

1386
1390
1384
1405
2209
2166

1318
1305
1325
1302
2375
2375

1242
1242
1242
1242
2495
2537
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Table 9.
The proportion of time at rest as & varies (¢ = 0.5, 5 = 0),

d 61 02 03 04 05 06 07 08 09 10

Time Resting 91 84 .78 71 66 63 59 .56 .53 50

time decreases. But, Table 9 is quite different from the corresponding
table in Figure 2 for caterpillars, The rest times for herons are larger
for the same values of 4 when ¢ = 0.5 and & = 0 than they are for
the caterpillar when & = 0.5 (and implicitly ¢ = 0). Is there a simple
rest-time formula for the heron, as there was for the caterpillar?

We start our data analysis by using the same trick as in the
caterpillar model; we compare B! to d while ¢ is held fixed at 0.5
and & is held fixed at 0. This yields the data and graph in Figure 7.

The data points in Figure 7 appear to fall along a straight line,
which indicates that there is a lincar relationship between R™' and
d. The vertical intercept of the approximating line appears to be 1,
and the line also passes through the point (1,2). Consequently, the
slope of the line is about | and its equation is: R ! = d + 1. From
this we conclude that when ¢ = 0.5 and b = 0, then R = 1 /(1 + 4).

R—l

d R—l 2.0

0.1} 1.10 7

021! 1.19 4

03 1.28 |

04 141

0.5 1.52 1

0.8 : 1.58 1.0
0.7 | 1.69 |

08 | 1.79

0.9 | 1.89 | ]
1.0 | 2.00 7

T T T T T T T T T

T
0.2 04 06 08 10d

Figure 7. The graph of R ' as a function of ¢ when ¢ = 0.5 and 4 = (.
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5.4

Exercises
13. What would the transition diagram for the case ¢ = 0 look like if
the heron started in the state {4,0}?

14. For your own value of ¢, produce a linear equation using the
same procedure as in the text. Use this to express R as a function
of d. You will need to use the heron computer simulation
program. Please report all the data you collect as well as
appropriate graphs.

The Relationship Between ¢, d and Rest
Time (b = 0)

So far we have worked with a single value of ¢ and we have let
d vary. However, the exercise above and our work with the caterpil-
lar model indicate that a relationship between ¢, d, and R might be
found. Analogous to the analysis of the caterpillar model in Section
3.5, we now let both ¢ and ¢ vary. For any arbitrary but fixed value
of ¢, we can allow d to change in a systematic way, much as we did
in the previous section when ¢ = 0.5. The heron simulation can then
be used to gather rest-time data for each value of ¢ as d varies. A
relationship between R and d can then be found for each particular
value of ¢. The hope is that all of these relationships fall into a
recognizable pattern. The results of such a series of calculations are
given in Table 10.

Table 10.
Equations derived for R as ¢ and d vary (b = 0).
¢ 1/6 1/3 1/2 2/3 5/6 1
1/3 2/3 i 4/3 5/3 2

1/3+d 2/3+4d 1+d 4/3+d 5/3+d 2+d

Table 11.
Predicted and observed values of R for arbitrary ¢ and 4 (6 = 0).
¢ d Predicted R Observed R
A1 73 A3 53
29 44 37 57
81 34 .83 83
59 55 .68 .69
18 56 39 39
27 11 .83 B3
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The relationship between ¢, ¢, and R in Table 10 seems to be
R =2¢/(2¢ + d). In light of the caterpillar model, this makes sense.
The prey values are doubled in the current situation. We can check
the model by seeing how accurately it predicts R for a variety of
values of ¢ and d. A series of simulations was carried out using the
heron program, and the results are reported in Table 11.

Exercises
15. Does the formula £ = 2¢/(2¢ + d) predict the relationship you
found between ¢ and ¢ in Exercise 14?

16. When & = 0 what must the relationship be between ¢ and 4 to
ensure that R > (.5, that is, that the animal is “lazy?”

Combining the Results
So far we have examined two special cases of the heron model,

which reduced a three-variable problem to a manageable two-varia-
ble situation. We saw that

b
l.fece=0,then R = ——;
b+ d
2¢
2. =10, then R = .
2c+ d

As a first guess as to what happens when neither b nor ¢ is 0, we
might hypothesize that the relation between R, 4, ¢ and d is given
by the simplest sort of combination of these two equations:

b+ 2¢
b+ 2+ d

Notice that if ¢ =10 this general formula specializes to the first
equation above, and if » = O the general formula specializes to the
second equation. We tested this general formula by using it to
predict values of R for various choices of &, ¢, and d. We then used
the hAeron simulation to check the accuracy of the predictions. The
result are given in Table 12, Again the fit is quite good!

Our equation for R tells us when a heron will be lazy. That is,

1 b+ 2¢ 1
R - ———— > — =2+ 4c> b+ 2c+ d
2 b+ 2¢c+ d 2

= h+ 2¢ > d.
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Table 12.
Predicted and observed values of R for arbitrary values of 4, ¢, and 4.
b c d Predicted R Observed R
20 10 40 50 50
31 .21 .61 .54 55
42 A4 .27 Vil 72
62 05 44 62 62
A2 18 63 43 42

For the heron, which expends little energy in its foraging behavior,
laziness is the rule (unless the probability of becoming hungrier in
any time interval becomes very large compared to the probability of
finding food). If either large or small fish become rare, a heron will
still be in a favorable foraging situation as long as the fish of other
sizes remain available in reasonable numbers. This points out the
advantage of diet breadth in terms of a stable foraging strategy. If &
and ¢ referred to two different species of fish, herons would be able
to forage effectively regardless of population density fluctuations in
any one prey species.

Exercises
17. If b = 0.3 and 4 = 0.4, what value for ¢ leads to a heron that
rests two-thirds of the time?

18. If ¢ = 0.2, what are possible values for & and 4 if the heron is to
rest 60% of the time?

19. If 4 = 0.3, what is the maximum possible value for rest time for
the heron?

6. A Different Analysis: Rates
of Change
In several situations now, we have been quite successful in

empirically deriving formulas that predict rest time. Further, these
formulas have been quite similar. Now that we know what these

“...we ask formulas are, we ask why these equations take the forms that they
why these do. One way of answering this question lies in reinterpreting the
equations take  foraging and rest transition cycle as a problem of rates and distances.
the forms that Consider the following analogy. Suppose that you go to visit
they do.” Grandma who lives # miles away. On the way there, you drive at a
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rather rapid rate of & miles per hour in anticipation of seeing her.
After eating a large and wonderful meal that she prepared, you
drive home at a more modest rate of 4 miles per hour. Since
rate X lime = distance, travel time is obtained by dividing the distance
by the rate. Therefore, the drive to Grandma’s takes n/d hours,
while the drive home takes n/d hours. Thus the fraction or ratio of
time spent driving home to total driving time is

n/d _ 1/d b
(n/6) + (n/d)  (1/6) + (1/d) b+ d’

which was also the caterpillar rest-time formula.® What is the
connection? Recall that for the caterpillar:

. 1 with probability &
fa(t—1)=1,th k= [ ’
fa(e—1) = 1, then 8k =4 (i brobability 1 — 6.
Here & represents the rate of successful foraging per unit time At
The walue or reward of a successful foraging bout in this case is
Ak = 1, while an unsuccessful trial is worth nothing. Thus the average
rate of change i h(t) with respect to time is just the rate of successful
foraging times its value, plus the rate of unsuccessful foraging times
its value. Algebraically this is simply:
Ah , ;
—==b-1+ (1l —-54) 0=05b.
v (1 -5)

An entirely similar analysis applies when the animal is at rest:

) —1  with probability &,

f a(z=1) = 0, then Ak = { 0  with probability 1 — d.

This time the average rate of change in £(¢) with respect to time is
given by:

ol () d)0=
— =d-(—1)+ (1 —d)-0=—d.
At
The negative sign indicates that A is decreasing or returning to O at d

units per unit time. That is, d is the speed; the negative sign
indicates the direction.

“Natice that r, the number of miles travelled cach way, does not appear in the final
EXPIession.
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h=1,a=1
/b" foraging \b‘
h=0,a=1 h=2 a=0
foraging |« ~| not foraging
d— ad
h=1,a=0

not foraging

Figure 8. The transition ¢ycle as a “'round trip.”
g ¥ P

Now think of the transition cycle as a round trip from an empty
gut, {0,1), to satiation, {2,0}, back to an empty gut, {0,1}. (The
comparison with the trip to Grandma’s is now obvious.) During the
trip to satiation, the caterpillar “travels” at an average rate of
Ah(1)/At = b; the caterpillar “travels” back to the hunger point at
an average rate of Ah/At = d. (See Figure 8.)

The return trip, or drop from satiation to hunger, is rest time.
Using the round-trip analysis, the ratio of return time to total travel
time, or in this context the ratio of rest time to total time is
b/(b + d). The fact that the “distance” travelled does not appear in
this equation explains why the formula predicts rest time for the
caterpillar regardless of the number of states involved, as you saw in
Exercises 6-9.

How does this analysis apply to herons? Recall that for herons,

2 with probability ¢,
if a(t — 1) = 1,then Ak = { | with probability 4,
0 with probability 1 - & — ¢.

The average rate of change in #(t) is calculated exactly as before.
Take the various success rates for foraging, multiply by the respec-
tive prey values, and sum these results together. In this situation we
have

Ah
E:b-1+c-2+(l—b—c)-0-‘-b+26.

The rate of change in A(t) while at rest has not changed and
remains —d. Using the trip analogy again, the ratio of rest time to
total time should be

b+ 2¢
b+ 2c+d
Indeed, this was our earlier result.
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A final remark concerning this analysis is in order. The
rate X ttme = distance equation that is essential to this interpretation
presupposes that the rates for each half of the trip are constant. Thart
is, we can only use this quick method of producing a rest-time
formula when A%/Af is constant for all foraging states and perhaps
different but still constant for all rest states.

Exercises
Suppose we alter the heron model and now assume that its gut
empties at three different rates depending on the level of activity

while not foraging. Assume that when the heron is not foraging, A
can be O, — 1, or —2. That is,

~2  with probability ¢,
if (¢ — 1) = 0, then Ah = { =1  with probability 4,
(0  with probability 1 — 4 — ¢,

When the heron is active, assume that there are only two possibili-
ties:

(0 with probability 1 — &,
ifalt-1})= h = . .
if al ) = 1, then A { 1 with probability b.
Next assume that gut capacity, #,,. is 4. Set the satiation point s to
be £ .. = 4. Finally assume that the hunger set point is # = |,

max

20. Why was the hunger set point not 0 (empty gut) in this modej?
What could happen to the heron’s gut if it were at rest when
At — 1) = 17

21. Draw the transition diagram for this model,

22. What is the average rate of change in A%/A¢ when the animal
is foraging?

23. What 1s the average rate of change in A2/A¢ when the animal
is not foraging?

24. You now have all the pieces required to use the “rate analysis”
or “round-trip analogy” to produce a formula that will predict
rest time for this anunal (in terms of the vanables b, 4, and ¢).
What will that formula be?
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7.

7.1

“...a cat can
get hungrier
once it begins
to forage.”

7.2

Model III: Energy Loss
During Foraging

The Cat as Forager

A cat has a far more expensive means of foraging than a heron
or a caterpillar. While a caterpillar bends down to eat, and a heron
stands and waits for the approach of a fish, a cat must stalk its prey.
The slow progress through the hedge or around the rosebush, fol-
lowed by a sudden leap, means that a hungry cat expends energy in
the course of its foraging behavior. Because of this, a cat can get
hungrier once it begins to forage.

Imagine a cat in a yard with both sparrows and robins present.
The end result of any one stalking sequence could be one of three
things. The cat might not catch anything; this corresponds to its
stomach becoming emptier once it has begun to forage. The cat
might catch only a scrawny sparrow barely worth the expense of
stalking it; this corresponds to “breaking even” on stomach contents
during the foraging bout. Or a cat might catch a nice fat robin; this
corresponds to the cat gaining more energy than it expended while
foraging.

The Mathematical Assumptions

Unlike earlier models, this one incorporates negative values of
Ak while foraging. At the same time, we also assume that the
possibility of starvation is so small that it can be ignored. Let us see
how these assumptions are reflected in the way the cat moves
between states.

First assume that the animal is actively foraging: (¢t — 1} = L.
Then

if (¢t — 1) = 1, we assume
—1 with probability ¢,
Ah = 0  with probability 1 — 4 — a,
1  with probability &,

and if A(t — 1) = 0, we assume

1 with probability r,

Ak = {0 with probability 1 — 7.
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l1-b-a 1-b-a 1-b—a
7 ™ i ™~ 7 A
"=lha=1,a=1|"% " |h=2a=1|" 2" h=3,a=1
. foraging | b - foraging | b - foraging
) !
d b
I +
h=3a=0 h=4a=0
not foraging [ 4 —| not foraging
N1-d 1-d—"

Figure 9. The transition diagram for a cat.

Notice that we have distinguished two types of foraging states:
A(t— 1) =1 and A(t — 1) = 0. This is necessary, because if we
allowed Ah = — 1| when A(t — 1) = 0, then this would permit £(1)
=h(t— 1)+ Ak =0—1 = —1. That is, the amount in the cat’s
gut would be negative! This makes no sense in this context, but in
the final model of this paper we will interpret this to mean that
death by starvation has occurred. Notice that in the other foraging
states, Ak = — 1 is allowed. In these cases, 2(t) = A(t — 1) + Ah =
1 + {(—1) =0, which i35 meaningful. In the non-active state we
assume as before that:

) —1  with probability 4,
if a4 = 1) = 0, then &% = { 0 with probability 1 — 4.

Next we set the thermostat points. We assume that the cat has a
gut capacity of 4. We set the satiation point at s = A __ = 4 and the
hunger point at « = 2. (Setting # = 2 leaves room for some decrease
in gut levels while foraging.} The transition diagram with six states is
now easily constructed; see Figure 9.

7.3 A Single Simplification

The description of the cat as forager that we have given in the
preceding section is quite general. It involves four different variables
and seven different ways to change states. In Herbers’s article there is
a complete derivation of the rest time formula for the general
situation [Herbers 1981]. The analysis is substantially more compli-
cated here than for the equations for R that we have worked out
earlier. A consequence of her work is that the proportion of time at
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rest in this model is described by the formula:
2%y

R= . . . —.
2b%r + d(a®(h + a) + r(26° + 26% + 2ba” + a*))

However, we will see that there is a single simplification that we can
make to the model which will allow us to analyze the situation using
our earlier techniques.

We start by analyzing the average rate of change in A(t) with
respect to time. When the animal is inactive {(a(? — 1) = 0), as we
have seen twice hefore:

A d d d
— =4d-(-1)+ (1 —-4d)-0= —a.
L)
When the cat is active (a(t — 1) = 1), there are two cases. If
At — 1) = 0, then

Ah

E=r-(l)+(l—r)-0=r.
On the other hand, if A(t) = 1 there is the potential for becoming
hungrier while foraging, since Ah = —1 with probability a, as well

as the potential for successful foraging or breaking even. The aver-
age rate of change in A(1) here is:

Ah

E=b-(1)+(1—b—a)-0+a-(—1)=b—a.

To apply the rate analysis technique of Section 6, the rates of
change in A(t) while foraging must be constant. Therefore, we now
make the additional assumption thatr = b — a. This simplification, though
primarily motivated by mathematics, has a biological meaning, as
will be discussed in Section 7.4. With this assumption, the average
rate of change in A(¢) in every foraging state is the constant & — a.
The rate of change is also constant while at rest, so the rate analysis
technique applies. We expect the ratio of rest to total time to be:

b—a
R= ——m.
b—a+d

This formula for R was tested using the simulation kitty (similar
to the caterpillar and heron programs) for various values of a, b, and
d and gave very accurate predictions (Table 13). Note that although
setting r = b — a allows us to use previous analytical techniques, it
also means that # — a must be nonnegative, since it represenis the
probability of a certain event occurring. Herbers’s more general
model does not have this restriction.

Consider the energetically-expensive darting and hovering forag-
ing technique of a hummingbird. Unsuccessful foraging bouts lead to
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Table 13.
Predicted and observed values of R for the cat.
b a d Predicted R Observed R
50 20 30 50 .50
.35 10 75 25 25
73 23 60 45 .46
47 21 31 46 45
67 23 29 .60 bl

negative values of A4 (a is not 0). Data collected on male Anna
hummingbirds (Calypte anna} show that even these birds spend a
great deal of time resting, because the nutritional reward they
receive from nectar-secreting flowers is reliable and generous [Stiles
1971). (That is, & is significantly larger than «.) Even male hum-
mingbirds that engaged in vigorous territorial defense (4 is large)
were able to perch approximately 60% of the time. Costly foraging
techniques do not preclude significant resting time as long as forag-
ing is quite successful (b is relatively large).

A Comment on Desperation

Should foraging probabilities change depending on how full an
animal’s gut is? Shouldn’t it forage in the same (optimal) fashion
regardless of gut contents? Why should an animal be susceptible to
getting hungrier while foraging only when its gut is not empty? Why
doesn’t it forage as if its gut were empty all of the time, and therefore
avoid becoming hungrier? Isn’t changing the probabilities when the
gut is empty equivalent to “getting something for nothing?” Isn’t the
r = b — a simplification of Section 7.3 “cheating” somehow?

Remember that our model deals only with gut contents, not with
other costs associated with foraging. A very hungry animal might be
desperate enough to alter its foraging strategy in ways that improved
its chances of finding food but caused other problems not expressed
in this model. A cat that got hungry enough might stalk birds in a
yard guarded by a dog. This entry into a previously unhunted area
might increase the cat’s odds of fAnding prey. However, a new
probability (call it x} may enter the picture—that of the cat getting
killed by the dog! The variable x doesn’t fit into our model, so it
looks as if the cat is foraging better (i.e., Ah # —1 when A(1 — 1) =
0} as it gets hungrier. Actually it may just be a riskier strategy that
locks like a very good idea only from the viewpoint of a very hungry
cat (or a very bored dog). The simplification r = b ~ a that we used
in Section 7.3 will have associated costs that do not appear in terms
of those three variables, but which are nonetheless real.
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In modeling group hunting behavior of lions, Clark found that
these predators should be hunting in smaller groups as the availabil-
ity of Thomson’s gazelles decreases and the lions’ bodily reserves
decline. This switch involves a trade-off, with a more risk-prone
strategy (smaller groups of lions are less likely to catch prey) being
accepted in order to achieve a greater possible reward (a Thomson'’s
gazelle just doesn’t provide enough wild venison to feed fully very
many lions) [Clark 1987]. Here, hunger and prey density are jointly
expected to modify the level of acceptabie risk in foraging behavior,
which is reminiscent of our house cat unhappily creeping about a
dog’s backyard.

Exercises

25. Show that when r = # — 4, Herbers’s complicated formula for
rest time at the beginning of Section 7.3 simplifies to our
formula.

Exercises 26-29 combine the ideas of the heron and the cat
examples. Assume that the cat will on occasion catch a pigeon
(Ah = 2) as well as sparrows and robins. Specifically, when the
cat is actively foraging and a(t — 1} = 1, then

if A(t — 1} = 1, we assume
—1 with probability a,

0  with probability 1 — b — ¢ — @&,

1 with probability &,

2 with probability ¢.

Ak =

When the cat’s gut is empty, we prevent the cat from starving
(Ak # — 1) but we also do not let it catch pigeons (Ah + 2), to
simplify the model. So

if h(t — 1) = 0, we assume

Ak = 1 with probability r,
~ 10 with probability 1 — 7.

Finally, when resting,

if a(t — 1) = 0, we assume

Ak = —1  with probability 4,
| 0 with probability 1 — 4.

26. If the hunger set point is # = 2 and the satiation set point is
s = 4, why must the gut capacity, £ of the cat be at least 57

max?
27. Draw the transition diagram for this cat with & = 5.
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28. What value of r allows you to use the “rate of change”
technique to produce a formula for rest time, R? (Hint: What is
the average rate of change in A when the cat is active and
At — 1) =2 17)

29. Using your assumption about r from Exercise 28, what do you
expect the rest time formula to be?

Model 1V: The Possibility

of Starvation

We now consider a case in which a predator may starve to
death, If a cat is stalking prey during the winter, it faces both
increased energetic expenses (staying warm in the cold air) and a
decreased probability of rewards (there are far fewer birds around to
cat, and perhaps the birds themselves are getting thinner). The cat’s
gut will empty more rapidly and its gut will fill more slowly.

A decrease in temperature (say from freezing to 10°F below
freezing) can be thought of as an example of a process increasing the
rate at which food reserves will be used up in a warm-bleoded
animal. Similarly, the fewer (or scrawnier) the birds in the yard are,
the lower the rate of gut filling will be. Changes in either or both of
the aspects of the cat’s environment will alter its prospects for
survival.

The Changes of State for the Stressed Cat

Our assumptions for the cat under stress are very similar to those
in Section 7.2. In particular, energy loss during foraging is possible.
However, when the cat is actively foraging, we will not distinguish
the case when the gut is empty ({2 — 1} = 0) from the case when it
is not empty (4(¢ — 1) = 1). First let us focus on the situation when
the gut is empty and the cat is, of course, active. If the cat is unable
to forage successfully or at least hold its own when £(f — 1) = 0,
then Ak will be — 1. Thus the new gut level will he

Ry =h{: —1)+Ah=0+(~-1)= -1

We interpret this to mean that the animal has starved to death, and
the activity function becomes 0. The cat cannot leave the state
{ —1,0} of the transition process (none of our cats have nine lives).
With this modification in mind, the changes of state can be described
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in the usual fashion:

if a(t — 1) = 1, we assume
—1 with probability a,
Ak = 0  with probability | — 6 — a,
1 with probability &.

Next,

if a(t — 1) =0and 4(t — 1} > 0,
—1  with probability 4,
then 44 = { 0  with probability 1 — 4.

Finally, the starvation condition is described by saying:

ifa(t—1)=0and Aa(t - 1) = ~1,
then &4 = 0 with probability 1.

As usual, satiation will occur at s = 4 = 4. However, it will prove
convenient to allow the hunger set point to vary for different cases.
So for now we will insist only on the necessary restriction that
0<u=<3.

Exercises
30. Draw the transition diagram for the cat under stress with hunger
set point u = 2.

31. Draw the transition diagram for the cat under stress with hunger
set point u = 0.

32. What are the differences between the two diagrams? Does one
seem more advantageous for the cat than the other? Why?

New Questions: Surviving the Winter

More important than describing rest time in this situation is
determining whether or not a cat can survive the stressful conditions
we have outlined. Let us assume that starvation becomes a possibility
for the cat only during the winter season. Our goal is to determine (in
a general way) how the various probabilities a, 5, and 4, as well as
the hunger point u, affect the cat’s survival.

We begin by defining winter as a time interval 300 units of At in
duration (any sufficiently long period of time will do). Next we say
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that the cat suwrvmwes the winter if its gut level A(t) never falls to — 1
during 500 iterates of the change of state process (i.e., the passage of
300 units of Ar). We will be kind and start the transition process
with the cat in the full, resting state {4,0}. To mitigate the effects of
having a particularly lucky or unlucky cat, we put 1000 cats at a
time through our winter stress test and count the number that
survive. We used the computer simulation koolcat to keep track of all
of this. It is similar to the other simulations we have used, except of
course, that the transition process is terminated for any cat whose gut
level drops to —1.

Consider a simple case: assume that the probability 4 of increas-
ing the gut level while foraging (Ah = 1) is one-third. Similarly,
assurne that the probability @ of the gut emptying during foraging
(Ah = —1)is also one-third. This means that for the final one-third
of the time the cat forages, it breaks even (A4 = 0). In other words,
all three outcomes are equiprobable. Finally, assume that the proba-
bility & of the gut emptying during rest is one-half, meaning the gut
is just as likely to empty as not while at rest. Just as we did in the
unstressed cat model, we let the hunger set point be u = 2, We
carried out the keolcat stress test under these conditions and none of the
cats survived the winter! The equally grisly details are reported in Table
14 for other values of u, and we also list the average winter lifetime
of the cats in units of Ar.

What happened? Are the winter conditions too severe? How can
we help the cats survive? In the next few sections, we will briefly
investigate the effects of varying 4, a, 4, and u to determine which
changes, if any, have a significant effect on the cat’s chance for
survival.

One point is already obvious from Table 14: the higher the
hunger set point, the longer the average lifespan. While this is of
little consolation here since all of the cats died anyway, it is some-
thing to keep in mind, We can interpret these data as saying the
sooner the cal gets hungry, the better its chances are of survival or prolonging its
lifespan. While it may seem cruel for the cat to be constantly hungry,

Table 14.
The average lifespan and the number of cats surviving
winter out of 1000, as u varies.

b a d t Survivors Average Lifetime
33 33 .50 0 0 17
33 33 50 1 0 25
33 33 50 2 0 33
33 33 50 3 0 40
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this turns out to be crucial for its survival. In general, the sooner the
cat looks for food (i.e., the higher the hunger set point), the less likely
the gut level will drop to the starvation level of —1. We will keep
track of this effect at each stage as we vary b, a, and 4. The data in
Table 14 will serve as a baseline from which to judge the effects of
all such variations.

Improving the Rate of Successful Foraging

Suppose that the cat is abie to increase its rate of successful
foraging, b. As b increases, the cat is able to find prey more often,
thereby staving off starvation. In particular, if we allowed the rate 4
to rise from one-third to two-thirds, we would expect the cat’s
chances for survival to improve markedly, presuming the other
factors were kept constant. Table 15 shows the results of such a
simulation.

Table 15.
The average lifespan and the number of cats surviving
winter out of 1000, as & varies.

& & 4

=

Survivors Average Lifetime

17
25
33
40

333 333 500

. A7 .333 500 20
3
43
55

500 333 500 21
36
55

73

583 333 500 24
42
64

106
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27
48
84
132

667 333 300
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The data in Table 15 do show that as b is increased, lifespans do
lengthen marginally. By the time & reaches two-thirds, there are
some survivors (when # = 3) but fewer than 3%! Indeed, notice that
for u = 0, allowing b to rise from one-third to two-thirds has about
the same affect on average lifespan as keeping 4 fixed at one-third
and letting « rise to 1 or 2. In general, we see that increasing u has
more effect than increasing b, and that the effect of increasing u is
greater as b gets larger.

The Effect of Lowered Energy Loss at Rest

Suppose the cat manages to rest more quietly and in a warmer
place. This will decrease the energy costs associated with resting,
with the result that the gut should take longer to empty. This will
mean that the cat will stay satiated longer and will face the problems
of foraging less frequently. We would predict that this will increase
the lifespan of the cats and increase the number of cats surviving
winter. Table 16 shows the effect of decreasing 4 from 0.500 to 0.050
while keeping 4 and d fixed at their baseline values of one-third.

Table 16.
The average lifespan and the number of cats surviving
winter out of 1000, as 4 varies.

b a d

=

Survivors Average Lifetime

17
25
33
40

333 333 500

=

22
28
37
42

333 333 350

W == O W h = O

333 333 .200 33
42
46

56

Lo oo |lcooCoc | oo o

106
113
120
124

333 333 050

Ly N~ D B N=0

—
=l R
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8.5

The effects are not much different from increasing b. There are
only a few survivors at the lowest & value. Again the changes
attributable to u are seen to be more significant than those caused by
varying d.

Moderating Winter

What happens if the winter season is milder, so that the energy
costs of foraging are reduced? This means the probability & of losing
energy while foraging will be decreased. With lower values of a we
expect increased lifespans for the cats. Will the effects be only
marginal, as they have been for increased values of 4 and decreased
values of &7 Intuition should tell us that the effects of reducing a to
nearly 0 should be quite dramatic. After all, when a = 0, starvation
is not possible and all cats survive. Just how low will 2 need to be
before we see significant changes in survival rates? Table 17 reports

Table 17.
The average lifespan and the number of cats surviving
winter out of 1000, as a varies.

b a d u Survivors Average Lifetime
333 333 500 0 0 17
1 0 25
2 0 33
3 G 40
333 .250 500 0 ¢ 23
1 0 37
2 ¢ 55
3 0 80
333 1350 500 0 a 40
1 5 92
2 51 166
3 165 235
333 100 300 0 | 61
t 59 175
2 337 312
3 637 406
333 050 500 0 23 130
1 495 363
2 868 464
3 a59 489
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the simulation data for a decrease in a from the baseline value of
one-third to a value of one-twentieth.

Table 17 shows that it takes rather low values of a2 (0.1 or less)
before there are significant numbers of cats surviving the winter. Just
as inportant, the data indicate that if the cats wait until the last
second to forage (u = Q), they still will not survive even when the
costs of foraging are very small. That the hunger set point is not 0 is
crucial to the cats’ survival,

Tentative Conclusions

Of the three probability variables, only one of them by itself has
a major impact on survival rates of the cats over winter. Lowering a
by itself can significantly alter lifespans and increase the number of
cats surviving winter. Raising 4 alone or simply lowering 4 will
change the results only marginally. In the exercises that follow we
ask you to explore the consequences of changing two or more of the
variables at a time, as well as to investigate some special adaptations
that animals have to the winter season.

The inability of changes in successful foraging (b) or energy loss
at rest (d) to improve winter survival significantly is intuitively
satisfying to anyone familiar with a northern winter. When the
temperature is well below freezing, where are the birds? Do they
manage to survive by improving the way they search for seeds
(increase h) in the snow? Do they build enormous fluffy nests
(decrease d) and sit tight up in the trees? Neither of these possibilities
occurs, Actually, they fly south in the autumn! By moving them-
selves to a warmer region, they “moderate the winter” {decrease «)
and live to return the following spring. This is clearly a viable
strategy for an organism as mobile as a bird, and it matches our
simulation results closely. But what about animals that lack wings?
Finally, review Section 1.2 in this module and consider possible
strategies for winter survival that fall outside this model’s scope.

Exercises

33. List at least three strategies that amimals In the wild exhibit
which allow them to survive the winter. How does each of these
strategies affect (if at all) the probability variables b, 4, and 4 as
well as the hunger set point u?

34, Can the combination of raising the rate 4 of success at foraging
and lowering the energetic costs & of resting have an impact on
the survival rates for cats? Choose appropriate values of 4, a,
and ¢ to test this hypothesis using the koolcat simulation. Report
the results and interpret their meaning.
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35.

36.

When a is low (say 0.1), does changing b or 4 or both have an
impact on survival rates, or is survival primarily a function of «
alone? Choose an appropriate set of values of 6 and ¢ which will
test this hypothesis. Use the Aoelcat simulation to gather data.
Report and interpret the results.

The Effects of Hibernation: Instead of a cat, suppose we were
studying the black bear, Ursus americanus, whose habitat includes
much of the eastern United States. (They are pests in some parts
of Pennsylvania and New Jersey and are more than occasionally
seen in the confines of that famous wilderness preserve, the
Garden State Parkway.) The black bear survives the winter
season by hibernating. In terms of the model we have outlined,
the black bear reduces the energy costs of resting to almost 0.
Since food resources for the bear are scarce during winter, the
baseline values for 5 and 2z of one-third each are not entirely
inappropriate, Assume that hibernation reduces 4 to .001.

a. What will be the ocutcome of puiting 1,000 such black bears
through the koolca! stress test? In particular, for the given
values of b, a and o, which value of # do you predict will
yield the highest survival rate? Why? (Please take time now
to think this through before you actually run the computer
simulation!)

b. Fill in the table below with the results of the koolcet simula-
tion for the black bear’s probability values.

b a d Ju Survivor51 Average Lifetime 1

333 | 333 | 001 | 0 |
K |
2 |
3 !
¢. Do your data support or refute your prediction? If your

prediction was not valid, do you now have an explanation for
the resulis? What is it?

9. Conclusion

When we consider the tremendous variety of feeding methods

emploved by animals, we also realize that considerable elaboration
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of the thermostat models presented in this unit are possible. Baleen
whales consume enormous numbers of tiny marine arthropods called
krilf. At certain times of year, the whales feed in Antarctic waters,
where the energy demand for maintaining a high body temperature
is extreme. Leeches gorge on blood meals, often consuming many
times their body weight. A leech may have to eat only two or three
blood meals a year, and it also expends no metabolic energy to raise
its body temperature above that of the ambient environment. Goril-
las live in social groups that move slowly through the forest, feeding
on plant materials (wild celery forms an important component of a
gorilla’s diet, and the noise of a troop of them eating must be
amazing). Social interactions among gorillas certainly affect which
individuals have the first access to which food items. When you think
of all of these sets of circumstances, and consider how any of them
might affect Ak, At, b, ¢, d, or any of the other variables we have
been discussing, you cannot help but see vistas of unmodeled regions
awaiting the future students of biology and mathematics!

Answers to Selected Exercises

=Y
I
—

+— O

—0.6 hfz) 0.4

2. a. Only states {0,0} and {3,1} are impuossible.
b. The required diagram is the same as Figure 5 in Section 5.3.1.

3. Though the caterpillar gets hungrier during each unit of At while at rest, the fact
remains that each time the caterpillar is satiated, it rests for the next two units of

AL

4. As b gets larger, the caterpillar becomes a more successful forager and becomes
satiated more quickly. Thus, it will spend less time foraging and have more time
for rest.

5. e. When ¢ = 0, the animal never becomes hungry (unrealistic) and £ = 1.

10. The praportions of time spent foraging and the proportion of time spent resting
sumn to 1. Thus the proportion of time spent foraging is

b d

“R=]- —— = —
: l b+ d b+ d
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11. If a value 2 food item were eaten, the heron's gut capacity would be exceeded.

12.

a
—d h = h=213 h=4 h=5
d a=20 «d- c=10 ~d- a=0 “d- a=20
o’ Ci-d/ 1-4a” Ciog’
13. 1-—-b 1-b 1-5
h=0 h=1
a=1 b~ a=1 b a=1
t I
d b
I '
h=1 h=2 h=13 h=4
a:Obd a=10 +d- a=0 «d- a=10

Ci-d? Li_a”’ Li1-4- Ci-4d/

The heron can never get back to state {4,0}.

2¢
16. R = Py d> 0.5 e 2¢> ¢ + 0.5d e ¢ > 054 We must also have 8 + ¢ =0
¢
+¢< 1. Thus 054 < ¢ £ 1.

b+ 2¢ 0.3 + 2¢
17. R = > 2/3 e ¢ > 025, We also need b+ c=

b+ 2 +d 03+ 2c+04
03+c<1l,s0¢< 0.7 Thus 0.25 < ¢ < 0.7

b+ 2e b+ 04

18, R = =
b+2e+d b+04+d
=46+02<1,50#<08 Thus 0 < 4 < 0.8. This range of b values forces d to

satisfy the inequalities: (.16 < < 0.96 which is acceptable.

> 0.6 = 0.4h + 0.16 > 4. We also need & + ¢

19. R is maximized when ¢ = 1 and b = 0, that is, when the heron always captures
prey with value 2. If ¢ =1, 6 =0, and 4 = 0.3, then R = 0.87.

20, Tf the heron were in state {1,0} at ¢ — | and if Ak = —2, then the new gut level
at time ! would be 1 — 2 = — 1, which is impossible.
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21, (—1—67 (—1_67 Cl_b—) (—'l—bw
h=0 h=1 h=2 h=13
a—1 a=—1 a=1 a=1
N ~ |
e d e b
N N ‘
h:2‘__d__ h=34——d—-— h—4
a=0 a= a=10
Cl—d—e?\\Sl:djjz//?l—d—e)
P
22, 4.
Ak
23.En—QxH-(—I)Xawox(l--d—e)=7(25+d).
b
24, R= ——n
b+ 20+ d

26. Since satiation occurs at gut level 4, the cat can still be foraging at gut |

evel 3. If

it captured a prey item of value 2 at this stage, its new gut level would be 5

{which must not be more than the maximum gut level).

27. ¢
1-b—c—a 1-b—c-a 1-b—c—a
& h=1 & h= - h=3 <~
—_r —» —_ b — —_—b —
a=1 a—=1 ea=1
- qQ — “— q -— -— g —
' \ | \
d c b ¢
: Y N
h=3 h=4 h=5
a=10 — d a=10 —d a=10
NSRS Si-q? 1-d”

28. Let r be the average change in gut level when the gut is not empty, that is,

r=—-1Xa+0X{-b—-—c—a)+ 1 Xb+2Xec=b+2¢—a.

b+ 2¢c—a

9, R= —————.
2 b+ 2e—a+d
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(l—i—a) <l—b-a) (l—b—ﬂ) (E;i;a‘)

30.
1-b-— 1-b-— 1-b— — b
C GP ( ) ( Cl»‘) <1 b G)
h=0 b h=1 h = h
—bh — —bh —» — b5 —
a=1 a=1 a= a=1
f—a — «—a — —a —
| 1 |
a d b
+ I )
h=-1 h=3 h=14
“«— g —
a=20 a=10 a=
Ci_42 Li_q”

h_o_b_’hZI_b_. h= — b
a=1| (8= .. a:l‘_a__ a=1
a d b
+ AN N
h=-1 h=1 h=2 h=3 h=4
=0 a=10 d a=10 ~—d a=20 “d c=0
1 Ci-4/ Li-a/ Vi-d/ Li-4/

32. In the second case, the animal comes to the brink of starvation before it begins to
forage. The probability of starvation should be greater in this case.

33. Hibernating {lowers ¢}, storing food (raises 4 and consequently lowers a), flying
south (lowers a, Taises &, and lowers &).
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Appendix: Computer Programs

The following Pascal programs can be used to generate data of the type used in
the text and exercises, Making a single compiled version of each program available to
the class will simplify the data collection process for those with little or no computer
experience.

The first program, caterpillar, is listed in complete detail. The next four programs
are variants on the first, and only the required modifications are listed. The programs
may be further modified to permit addibonal experiments, with parameter changes
that might be suggested from class discussion of the unit.
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caterpillar

program caterfillar (input, outpul );
const fmax = 2w =1 s = 2; {gut capacity: hunger & satiation points}
type gul _type = 0. hmax;
activity _iype = (resting, foraging);
stale __Ippe = arvay| gul _type, activity_type | of nteger:
var b, 41 real; { probability variables}
state. state __lype; {entries in state are (gut level, activity) pairs}
function Random(var seed. integer): real
{Generates a pseudo-random number such that & < = Random < 1. Sec OA! Pascal!,
by Doug Cooper and Michael Clancy (New York: W. W, Norton, 1985), 144-147
Caution: This function is designed to be well-behaved on 16-bit machires. Your
system may have a built-in random number generator that you may wish to employ
instead. This function is called by Change _ State. }
const modutus = 65536, {constanis use to produce random 5}
multiplier = 25173,
tnerement = 13044
begin
seed == ({multiplier « seed} + ncrement Yonod  modulus;
{makes seed an integer such that ¢ < = sced < modulus-1}
Random == seed /mudutus; {makes 0 < = Random < 1}
end; {Random}
procedure [uitialize{var seed. inleger; var state: state __Lype);
{Initializes seed and the state array. }
var gul __level: gul _ type;
activily: achivity __ lype;
begin
seed 1= clock;
{Initialize seed for random number generator. While “clock™ is not standard
Pascal, most Pascal implementations have some sort of function that represents
the time of day. You may substitute a constant for “clock™ but this will produce
the same set of “random” numbers cach time the program is run.}
for actiily = resting 1o foraging do

for gut _level == 0 to hmax do state| gut _level, activity | = [
end; {Irutialize}
procedure Start _ Animal(var gut _level: gul _type; var actuuly: actimty__type);
hegin
gul __level = hmax; {the animal starts with a full stomach}
aclivily = resting; {and at rest}
end; {Start_ Ammal}

procedure Check _ Value {var p: real ).
{Does the probability lie between O and 12 “alled from Lnter b and Enmer_d.}

var in__range. buolean; {flag that a probability variable is in range}
begin
in__range = false; {initializc the Aag}
repeat
readin{ £); {read the probabifity }
m_range = {({p>=0and (p <= 1)
writeln;

if nut fn__range then
write(’ Probability value is not between 0 and 1. Re-enter it:™);

until in_range.
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end; {Check __Value}
procedure Enter__d{var d: realy;
{Input probability of energy loss at rest. This procedure calls Check _ Value. )
begin
writeln: writeln;
write("Enter probability d of cnergy loss at rest:’);
Check __ Value(d ),
end; {Enter__d}
procedure Enter _bivar b real );
{1nput probability of finding value 1 food. This procedure calls Check_ Value. }
begin
writeln;
write("Enter probability b of finding value 1 food when foraging:");
Check __ Value(h):
end; {Enter__b}
procedure Change _ State(b, d: real, var state. state __type);
{Stimulates changes in gut and activity levels over 10000 units of time. Calls the
function Random. It has a subprocedure Foraging _ Bout.}
var {ime: 0, 1000,
gut _level, put _ type;
acltotly: activity __type:
seed: wnleger; {sted for random number generator )
md: real; {random number }
procedure Foraging _ Bout(var put__level: gut_ type);
{For the foraging caterpillar, if 0 <= nd < b, it finds food and the gut level
increases. If b < =rnd << 1 then it does not find food and the gut level is
unchanged. }

begin
if md < b then gut _level == gut _level + 1,
end; {Foraging _Bout)
begin {Change___State}

Tutilize( seed, state);
Start _ Animal( gut _level, activity};
for fime = 1 to 10000 do begin
{Pick a random number to determine the new gut __level.}
md = Randomi( seed J;
¢ actuvety = foraging) then Foraging __ Bowt( pul __level };
f{{ actinify = resting) and (md > 1 — 4))
then gut _ level »= put _level - 1
{While resting, if 0 < =rnd <1 — d, then the gut is unchanged. If | - d
<= rnd < |, the gut empties a unit.}
{Have activity switch points have been reached or exceeded? )

U gut__level < = y then achinty = foraging; {hunger point}
if gui _fevel = = 5 then achwity = resting; {satiation point)
{Update state tracking the number of times cach (gut_ level, activity) pair
aecurs.
Sate| gut _lewel, activily] = state| gut_level | activity] 4 L;
end; {fur ume}
end; {Change __States )

procedure Prind__ Results( state: state__type);
{ Print the entries of state showing the number of times the animal was in cach state. )
var gt _level: gul _ ippe;
ackinity: activity_type;
begin
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writeln; writeln;
writeln("State’, 'Number’: 20);

writeln;
for activity := resting to foraging do
for gut _level :== () to hmax do {consider only feasible states )

if({{activtty = resting) and ( gut__level > u)) or
{(activity = foraging) and {gut __level < 5))) then
writeln(*{, gut _level;,’,7, activity:9, "), state] gut _level, activity|);
end; {Print _ Results}
begin {MAINLINE}
Enter _d(d);
Enter _b(86),
Change __State( b, d, state);
Print _ Results( state ),
end,

caterpillar2

Change the first two lines of caterpillar to:
program calerpillard(input, oulput );
const hmax = 3; u=10; s = 3; {gut capacity; hunger & satiation points}

heron

Change the first two and sixth lines of caterpillar to:
program herond inpul, output };
const Amax = 4; u = 0; 5 = 3; {gut capacity; hunger & satiation: points}
var b, ¢, d: real; {probability variables}
Add the following procedure to caterpiiar after the procedure Enter 6.
procedure Enter _c(var ¢: real);
{Input probability of finding value 2 food. This procedure calls Check __ Value.}
begin
writeln;
write(* Enter probability ¢ of finding value 2 food when foraging:');
Check __ Value(c);
end; {Enter _c}
Change the arguments of the procedure Change__ State to:
procedure Change_ State(b, ¢, d: real; var state: stale__Lype):
Change the subprocedure Feraging __ Bout 1o the following.
procedure Foraging__ Boul(var gut _lrvel: gut _type);
{For the foraging heron, if 0 <= rnd < b, it finds value | fond; if b < = rnd <
1 — ¢, the animal finds no food; if 1 — ¢ < =rnd < I, the animal finds value 2
food.}
begin
i md < b then gut  level == gut__level + 1
else if md > = (1 — ¢} then gut__level = gut __lrvel + 2,
end; {Foraging _ Bout}
Change the Mainline of caterpiliar 1o:
begin {MAINLINE}
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Enter __d(d);

repeat
Enter__b(b);
Frter _c(c);
if &+ ¢>1then wrtelin(Ch + ¢ > 1; Re-enter data’);
until b + ¢ < =1; {probabilitics b and ¢ must sum to <=1}
Change __State b, ¢, d, stale);
Print__ Resulis(state);

end.

kitty

Change the first two and sixth lines of caterpaflar to.
program kitty(imput, output )
const Amax =4, u = 2; v = 4; {eut capacity; hunger & satiation peints}
var a, b, d: real; { probability variables}
Add the following procedure to caterpilfar after the procedure Enter 6.
procedure Enter__a(var a: real );
{Input probability of Josing energy while foraging. Calls Check _ Value. }
begin
wrilein;
write(’Enter probability a of losing energy whiie foraging:’);
Check _ Value(a);
end; {Enter _a}
Change the arguments of the procedure Change _ State to:
procedure Change _ Statet b, a, d: real; var state: state__ype);
Change the subprocedure Foraging_ Bout to the following.
procedure Foraging _ Bout(var gul _level: gut__ iype);
{For the foraging cat, if the gut Jevel > 0 theno if 0 < = end < b, it finds value |
food: il b < = rnd < 1 -~ a, the animal finds no food; if | a<=rmd <1, the
animal finds value 2 food. If the gut level = 00 then: if 0 < = md < (b — a) then it
finds value | food; if (b — a) < = rnd < 1, then it finds no food. (Recall: b a =
r}
begin
if il __fevel > 0 then begin
if md < b then gut_level i= gut _lerel + 1
clse if md > = (1 - a)then gut _level — gui__level — 1,

end
clse Wl md < (b — a) then gul _level = pul __level + |
end; {Foraging _ Bout}
Change the Mainline of ecaterpflar to:
begin {MAINLINE}
Fnter _d{dY;
repeat

Frter _bib);
Enter _ala),
if b a<=20then wrteln{’b  a < = 0; Re-cnter data’);
il A1 a>1then wrtein(’b + a > |; Re-enter data’):
untif{th + <= 1)and(p a > 0)); {probabilitics are restricted by the model |
Change __ State(b, a, d, stale):
Prini __ Results( state ),
end.
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koolcat

The koulcat program requires several changes in the kitty program. The entire
program is outlined in detail below.
program keolcat{input, oulpul };
const hmax = 4; 5 = 4,
type aclivity __type = (resting, foraging);
gul__type = — 1.4,

var a, b, d: real; { probability variables)
The next function and five procedures are exactly the same as in &ilty.
function Random(var seed: integer). real;
procedure Start_ Animal(var gut _level: gut _type; var activity: achuly __type);
procedure Check _ Value(var p: real);
procedure Enter__d(var 4: real);
procedure Enter _b{var b: real);
procedure Frter __a{var a. real);
The procedures Change_ State and Prini_ Resulls are to be replaced by the following
procedure,
procedure Determine _ Survivors(b, a, d: real);
{Determine how many of 1000 cats survive “winter’ {the passage of 500 units of time)
and determine the average life span of the cats.}

var u: 0..3; {the hunger point will vary}

pul _level: gul _[ype;
activity: activily__ type;

cals: 1..1000; {number of cat put through the simulation )
time: 0)..500, {time period simulated is 5({} units long )
survizors: 00..1000; {cats surviving the winter simulation }
total __ lifespans. nteger, {total of all cats’ lifespans )}
seed: inleger;
md. real;
begin

seed = clock; {sec comments in caterpillar}

for u = 0 to 3 do begin {the hunger point will vary}
survivors 7= 0 total __lifespans = 0, {initialize }

for cats =1 to 1000 do begin
Star! _ Animai( gut _level, activily);
time 1= (); {inittalize time}
repeat
md = Random{seed ),
il acttvity = foraging then begin
{if foraging then: if 0 <=rnd < b, the cat finds value 1 fuvod; if
b < =rnd < (I — a), it finds no food; if (t - a) <= rnd < 1 it loses
energy. |
if md < & then gut _level == gut __level + 1
else if md > = (1 ~ a) then gut__level 1= gut __level - 1;

end; {if activity}
if((activity = resting) and (red > 1 — d))
then gut _level == gut__level — 1; {as usual }

{Have activity switch points been reached or excecded?]

if gut_level < = u then activily == foraging;

it gut_level > = 5 then actiily = resting;

time == time + 1,
until{(time = 500} or (gut__level = — 1)) {survives or starves
tolel __lifespans += lotal _lifespans + lime; {update total __lifespans }
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if time = 500 then surwors == survivors + 1 {update survivors]
end; {for cats}
wrileln; writein: {output results)

+

writeln ('For u =", w2, survivers:4,” out of 100 survived.):
writein {"The average lifespan was’, tofal __lifespans /1000);

end; {foru}
end; {Determine_ Survivors)
The new Mainkne is:
begin {MAINLINE}
Enter _d(d);
repeat

Enter __b(5Y;

Enter _a(a);

if # + a> 1 then writeln (b + a > 1; Re-enter data’);
until b + & < = 1; {{oraging probabilitics must sum to < =1}
Determine _ Survivors(h, a, d);

end. i;'%::
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